Range Sum Query - Mutable

Jul 5, 2021

Leetcodearrow-up-right

Given an integer array nums, handle multiple queries of the following types:

  1. Update the value of an element in nums.

  2. Calculate the sum of the elements of nums between indices left and right inclusive where left <= right.

Implement the NumArray class:

  • NumArray(int[] nums) Initializes the object with the integer array nums.

  • void update(int index, int val) Updates the value of nums[index] to be val.

  • int sumRange(int left, int right) Returns the sum of the elements of nums between indices left and right inclusive (i.e. nums[left] + nums[left + 1] + ... + nums[right]).

Example 1:

Input
["NumArray", "sumRange", "update", "sumRange"]
[[[1, 3, 5]], [0, 2], [1, 2], [0, 2]]
Output
[null, 9, null, 8]

Explanation
NumArray numArray = new NumArray([1, 3, 5]);
numArray.sumRange(0, 2); // return 1 + 3 + 5 = 9
numArray.update(1, 2);   // nums = [1, 2, 5]
numArray.sumRange(0, 2); // return 1 + 2 + 5 = 8

Constraints:

  • 1 <= nums.length <= 3 * 104

  • -100 <= nums[i] <= 100

  • 0 <= index < nums.length

  • -100 <= val <= 100

  • 0 <= left <= right < nums.length

  • At most 3 * 104 calls will be made to update and sumRange.

Basic Idea:

这道题目就是典型的线段树的应用,利用线段树可以支持此题中所要求的update和range sum query操作,时间复杂度为 O(logN) update, O(logN) query.

对时间复杂度的解释:

  1. 整个树的高度为 log2(n) ,而在一次query中每层最多access 2个node,所以最多为 O(2 * log2(n))=O(log2(n))

  2. 关于construct的时间复杂度,递归式为 T(n)=2T(n/2)+c, 层数最多为 log2(n), 所以有T(n) = c + 2c + 4c + 8c + ... + 2^log2(n) * c = O(n) .

Java Code:

Last updated