4Sum II

Update Aug 19,2017 15:45

LeetCodearrow-up-right

Given four lists A, B, C, D of integer values, compute how many tuples (i, j, k, l) there are such that A[i] + B[j] + C[k] + D[l] is zero.

To make problem a bit easier, all A, B, C, D have same length of N where 0 ≤ N ≤ 500. All integers are in the range of -228 to 228 - 1 and the result is guaranteed to be at most 231 - 1.

Example:

Input:
A = [ 1, 2]
B = [-2,-1]
C = [-1, 2]
D = [ 0, 2]

Output:
2

Explanation: The two tuples are:

  1. (0, 0, 0, 1) -> A[0] + B[0] + C[0] + D[1] = 1 + (-2) + (-1) + 2 = 0

  2. (1, 1, 0, 0) -> A[1] + B[1] + C[0] + D[0] = 2 + (-1) + (-1) + 0 = 0

Basic Idea(分治):

注意到这道题目是要从每个排序列表中选择一个数,我们可以考虑先把其分为两组,(A,B) 和 (C,D)然后算出每组中所有数字之间两两之和,存入HashMap,然后检查有多少组两组和相加等于0. 这其实是一种分治的思路。

Java Code:

update 2018-08-05 13:27:03

Update C++ Solution

要特别注意unordered_map的用法,[]有可能会导致插入一个元素,所以要用find。