Paint House II
update Sep 12,2017 10:31
There are a row of n houses, each house can be painted with one of the k colors. The cost of painting each house with a certain color is different. You have to paint all the houses such that no two adjacent houses have the same color.
The cost of painting each house with a certain color is represented by a n x k cost matrix. For example, costs[0][0]
is the cost of painting house 0 with color 0; costs[1][2]
is the cost of painting house 1 with color 2, and so on... Find the minimum cost to paint all houses.
Note: All costs are positive integers.
Follow up: Could you solve it in O(nk) runtime?
Basic Idea:
和上面的题目类似,不同的是我们这次需要考虑 k 种颜色,所以我们需要一个 k*n 大小的数组,利用之前一题相同的状态转移方程,可以做到 O(nk^2) 时间的解,因为每次求 min 我们需要 O(k) 时间,对除每个颜色外的其他颜色分别求min,则需要 O(k^2) 时间,所以我们必须优化。
注意到每次事实上我们只需要维持第 i-1 个房子的 min 和 second min 就可以,我们用一个 size=2 的 maxheap (priority queue)来解决,如此就是 O(nk) 时间,而且空间也不需要保存 n*k 的数组,达到了O(1)space。
Java Code:
// O(n*k^2) 解法
class Solution {
public int minCostII(int[][] costs) {
int k = costs[0].length;
int n = costs.length;
int[][] dp = new int[k][n];
for (int i = 0; i < dp.length; ++i) {
for (int j = 0; j < dp[0].length; ++j) {
dp[i][j] = Integer.MAX_VALUE;
}
}
for (int i = 0; i < k; ++i) dp[i][0] = costs[0][i];
for (int i = 1; i < n; ++i) {
for (int j = 0; j < k; ++j) {
for (int m = 0; m < k; ++m) {
if (m != j) {
dp[j][i] = Math.min(dp[j][i], dp[m][i - 1] + costs[i][j]);
}
}
}
}
int ret = Integer.MAX_VALUE;
for (int i = 0; i < k; ++i) {
ret = Math.min(ret, dp[i][n - 1]);
}
return ret;
}
}
// O(nk) 解法
class Solution {
public int minCostII(int[][] costs) {
int n = costs.length;
int k = costs[0].length;
PriorityQueue<int[]> pq = new PriorityQueue<>((a, b) -> {
return Integer.compare(b[0], a[0]); // size 2 max heap
});
for (int i = 0; i < k; ++i) {
pq.offer(new int[] {costs[0][i], i});
if (pq.size() > 2) {
pq.poll();
}
}
// 依次考虑每个房子,pq中保存上一个房子最小cost的两个颜色以及cost
for (int i = 1; i < n; ++i) {
int[] second = pq.poll();
int[] min = pq.poll();
for (int j = 0; j < k; ++j) {
int minCost = (j == min[1] ? second[0] : min[0]) + costs[i][j];
pq.offer(new int[] {minCost, j});
if (pq.size() > 2) {
pq.poll();
}
}
}
// 最后pq中保存的最小cost就是解
pq.poll();
return pq.poll()[0];
}
}
Last updated