Palindrome Partitioning II

update Dec 2, 2020

Leetcode

Given a string s, partition s such that every substring of the partition is a palindrome.

Return the minimum cuts needed for a palindrome partitioning of s.

Example 1:

Input: s = "aab"
Output: 1
Explanation: The palindrome partitioning ["aa","b"] could be produced using 1 cut.

Example 2:

Input: s = "a"
Output: 0

Example 3:

Input: s = "ab"
Output: 1

Constraints:

1. 1 <= s.length <= 2000
2. s consists of lower-case English letters only.

Basic Idea:

使用DP的思路,我们可以定义dp[i] 为从 i 开始到结束最少需要cut几次,那么对于每个j > i, 使得s[i:j]可以构成回文串,那么dp[i] = min(dp[j+1]) for j>i 且 s[i:j] 是回文。于是这个算法就是从右到左对于每个i,我们检查每个j,更新 dp[i]。而对于如何判断 s[i:j] 是否是回文,我们可以使用dp来预处理。这样总的时间复杂度为 O(N^2).

Java Code:

class Solution {
    public int minCut(String s) {
        int N = s.length();
        boolean[][] isP = new boolean[N][N];
        for (int i = N - 1; i >= 0; --i) {
            for (int j = i; j < N; ++j) {
                if (s.charAt(i) == s.charAt(j)
                    && (j - i < 2 || isP[i + 1][j - 1])) {
                    isP[i][j] = true;
                }
            }
        }
        int[] dp = new int[N + 1];
        for (int i = N - 1; i >= 0; --i) {
            dp[i] = Integer.MAX_VALUE;
            for (int j = i; j < N; ++j) {
                if (isP[i][j]) {
                    dp[i] = Math.min(dp[i], dp[j + 1] + 1);
                }
            }
        }
        return dp[0] - 1;
    }
}

Last updated