Length of Longest Fibonacci Subsequence
update Nov 11, 2020
A sequence X_1, X_2, ..., X_n is fibonacci-like if:
1. n >= 3
2. X_i + X_{i+1} = X_{i+2} for all i + 2 <= n
Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A. If one does not exist, return 0.
(Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements. For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)
Example 1:
Input: [1,2,3,4,5,6,7,8]
Output: 5
Explanation:
The longest subsequence that is fibonacci-like: [1,2,3,5,8].
Example 2:
Input: [1,3,7,11,12,14,18]
Output: 3
Explanation:
The longest subsequence that is fibonacci-like:
[1,11,12], [3,11,14] or [7,11,18].
Note:
1. 3 <= A.length <= 1000
2. 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9
(The time limit has been reduced by 50% for submissions in Java, C, and C++.)
Basic Idea:
我们注意到对于不同的序列,我们只需要其中两个相连的元素就可以确定整个序列,所以我们可以使用DP的思路。使用一个二维DP数组,从前往后,对于每个i,对于每一对[j,i],j < i
,我们检查 A[i]-A[j]
是否存在于给定数组A中,如果存在,假定其index为k,那么此时dp[k][j]
应该已经在之前求出(因为这里的右边界j小于i), 则我们有 dp[j][i] = dp[k][j] + 1
。 这样我们就可以求出对于所有的右边界i,[j,i]
对应的最大长度。
Java Code:
class Solution {
public int lenLongestFibSubseq(int[] A) {
int N = A.length;
int[][] dp = new int[N][N];
Map<Integer, Integer> indexMap = new HashMap<>();
for (int i = 0; i < N; ++i) {
indexMap.put(A[i], i);
}
int ret = 0;
// 对所有在i之前对部分,找到以每对[j,i] 结尾的长度, 记录在
// dp数组中即为 dp[j][i]
for (int i = 0; i < N; ++i) {
for (int j = 0; j < i; ++j) {
Integer idx = indexMap.get(A[i] - A[j]);
if (idx != null && idx < j) {
dp[j][i] = dp[indexMap.get(A[i] - A[j])][j] + 1;
ret = Math.max(dp[j][i], ret);
}
}
}
return ret < 1 ? 0 : ret + 2;
}
}
Last updated