Length of Longest Fibonacci Subsequence

update Nov 11, 2020

Leetcodearrow-up-right

A sequence X_1, X_2, ..., X_n is fibonacci-like if:

 1. n >= 3
 2. X_i + X_{i+1} = X_{i+2} for all i + 2 <= n

Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0.

(Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)

Example 1:

Input: [1,2,3,4,5,6,7,8]
Output: 5
Explanation:
The longest subsequence that is fibonacci-like: [1,2,3,5,8].

Example 2:

Input: [1,3,7,11,12,14,18]
Output: 3
Explanation:
The longest subsequence that is fibonacci-like:
[1,11,12], [3,11,14] or [7,11,18].

Note:

Basic Idea:

我们注意到对于不同的序列,我们只需要其中两个相连的元素就可以确定整个序列,所以我们可以使用DP的思路。使用一个二维DP数组,从前往后,对于每个i,对于每一对[j,i],j < i,我们检查 A[i]-A[j]是否存在于给定数组A中,如果存在,假定其index为k,那么此时dp[k][j] 应该已经在之前求出(因为这里的右边界j小于i), 则我们有 dp[j][i] = dp[k][j] + 1。 这样我们就可以求出对于所有的右边界i,[j,i] 对应的最大长度。

Java Code:

Last updated